This site uses cookies to provide you with a better experience. For information on our Privacy and Cookie Policy, please visit this page. By continuing to use the site or closing this banner, you are agreeing to our terms of use. Close

How Lithium Silicate work?

2018/08/02
  • LINE
  • X
  • LinkedIn

Lithium silicate chemical hardeners for concrete have been growing in market share in comparison to sodium or potassium silicates, increasing in direct proportion to diamond-polished floor work. So why are lithium silicate densifiers sales increasing?
How silicates work
Sodium, potassium, magnesium, and lithium silicates all react with calcium hydroxide (also referred to as “portlandite”)—a byproduct of cement hydration—to produce calcium silicate hydrate (C-S-H), the same binder that results from adding water to cement and gives concrete much of its strength and hardness. In the hydration process, calcium hydroxide dissolved in water moves to the surface region of a slab where the silicates can react with it. This newly created C-S-H is deposited primarily in the pores and canals on the surface of a slab.
Normally when calcium hydroxide comes to the surface of fresh concrete, it reacts with atmospheric carbon dioxide, producing carbonation (calcium carbonate). The reaction is greater when the concrete humidity is high and when bleeding is prolonged. It's also accelerated by construction heaters that produce carbon dioxide.
This reaction of soluble silicate with calcium hydroxide in concrete also produces alkali metal hydroxide, lithium hydroxide, potassium hydroxide, or sodium hydroxide, all of which could be detrimental to concrete if reactive aggregates and moisture are present. There is also the potential of the silicate to form efflorescence, which is highest with sodium, lower with potassium, and lowest with lithium. The function of the sodium, potassium, or lithium part of the silicate's function only is to stabilize and solubilize the silicate so it can remain in solution until it penetrates the concrete and then can react with the abundant calcium hydroxide found in the concrete. Sodium, potassium, or the lithium ions typically do not react in concrete to any degree, so they are incidental to the primary benefits.
But the hydroxides from sodium, potassium, and magnesium in combination with laitance from the scrubbing process must be removed before they crystallize on the surface. The advantage of lithium—when applied in the correct amount—is it dries to a dust. It also is considerably more alkaline, raising the pH of the surface concrete and reducing the possibility of alkali silica reaction (ASR).

Recommendations For You

Browse Alphabetically : 0-9  A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  Hot Searches
History
    Inquiry Cart